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Simulations of the pinch-off of an inviscid fluid column are carried out based upon a poten-
tial flow model with capillary forces. The interface location and the time evolution of the
free surface boundary condition are both approximated by means of level set techniques
on a fixed domain. The interface velocity is obtained via a Galerkin boundary integral solu-
tion of the 3D axisymmetric Laplace equation. A short-time analytical solution of the
Raleigh–Taylor instability in a liquid column is available, and this result is compared with
our numerical experiments to validate the algorithm. The method is capable of handling
pinch-off and after pinch-off events, and simulations showing the time evolution of the
fluid tube are presented.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction and overview

A significant challenge in the numerical solution of free boundary problems is when the domain undergoes topological
changes. This is often the case for the potential flow models that describe a variety of important fluid flow problems, the
Rayleigh–Taylor (or Rayleigh–Plateau) instability of a fluid column considered herein being a prime example [26,27]. A sec-
ond critical aspect of these (and other) simulations is that, on the free surface, the boundary condition for the Laplace equa-
tion must be obtained by solving a separate partial differential equation defined on the evolving front.

The Level Set Method was specifically designed to cope with topological changes in moving boundary problems [35].
Moreover, for advancing material properties defined and governed by a differential equation on the front, effective Level
Set techniques have been recently developed [3]. As the Level Set approach produces (almost directly) a new surface mesh
if desired, it invites solving the governing equation in the volume by means of a Boundary Integral analysis. These combined
methods were first applied to successfully simulate complex dendritic growth in solidification [30]. More recent work has
investigated the field emission of liquid droplets [38] and interface motion in two phase flows [8]. The Level Set algorithm
for advancing the free boundary condition was initially employed to model the propagation and breaking of waves over
. All rights reserved.
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sloping beaches [12,13]. In this work however, due to the limitation of the potential flow assumption, modeling of the wave
after breaking (reconnection) was not attempted.

Drop formation problems, for viscous and non-viscous fluids, have been widely studied for many years due to its fasci-
nating nature and interest in various technical and industrial fields, such as inkjet printing, sprays and electrosprays, etc. The
first outstanding contributions were due to Savart [28], Plateau [26] and Rayleigh [27] and an extensive review of fluid break
up has been given by Eggers [10,11]. Other interesting works in this field can be found in [4,6,18,21,24,29].

In this paper an inviscid fluid under the effect of capillary forces will be studied. Assuming that the liquid (e.g., water)
remains in the inviscid regime down to molecular scales, pinch-off and drop formation will result in a Rayleigh–Taylor insta-
bility. It has been shown theoretically [5,9] and computationally [19] that the phenomenon of inviscid pinch-off is asymp-
totically self-similar with both radial and axial length scales decreasing as s2=3 and velocities increasing like s�1=3, where s is
the time to pinch-off. It will be demonstrated that these results can be observed in the numerical simulations, validating the
numerical methods.

A mathematical model and numerical approximation for the evolution of a 3D axisymmetric fluid domain is presented,
capturing the time evolution of a fluid column before and after pinch-off events. The algorithm is capable of continuing the
evolution of the first drops through the subsequent cascade of drop formation.

The paper is organized as follows: In Section 2 we present the model equations for an inviscid fluid flow in 3D and its
axisymmetric version using a Lagrangian–Eulerian formulation. The complete Eulerian approach of the model equations
using the Level Set Method is established in Section 3; we also demonstrate that the recasted system of PDE’s automatically
incorporates topological changes of the free surface and the evolution of the associated velocity potential function. In Section
4 we present the numerical schemes used, with a detailed description of the complete algorithm. Finally, in Section 5, we
first present numerical results for the linearized model and compare them with the short-time analytical solution. Then,
the full nonlinear approximation is used to compute the evolution of the fluid column before and after first pinch-off, fol-
lowing the satellite drop evolution and its subsequent break up. A series of numerical experiments are carried out to show
the convergence of the algorithm. We complete the validation of the numerical results by checking the self-similar scaling
laws for the first pinch-off, as well as the subsequent pinch-off occurrences.

2. The governing equations

To model the Rayleigh–Taylor problem, consider an infinite liquid column in the absence of gravity and initially at rest.
Movement of the fluid is induced by perturbing the free surface of the cylinder with a small amplitude wave of wave number
k ¼ 2p

L . For the numerical simulations, the domain will be made finite by introducing lateral boundaries for the cylinder and
imposing periodic boundary conditions for these surfaces.

Let XðtÞ be the 3D cylindrical fluid domain surrounded by air and CtðsÞ ¼ ðxðs; tÞ; yðs; tÞ; zðs; tÞÞ a parametrization of the
free surface boundary at time t (see Fig. 1). For an incompressible and inviscid fluid, the governing equations are the Euler
equations
r � u ¼ 0 in XðtÞ; ð1Þ

ut þ u � ðr � uÞ ¼ �rp
q
þ b in XðtÞ; ð2Þ
where uðx; y; z; tÞ is the fluid velocity, pðx; y; z; tÞ the pressure field, bðx; y; z; tÞ the body forces (per unit mass), and q is the
fluid density.

Further, if irrotationality is assumed, the vorticity vanishes everywhere in the flow. In this case, the Helmholtz decompo-
sition states that the velocity field can be represented as the gradient of a scalar function, referred to as the velocity potential
/ðx; y; z; tÞ. Thus, u ¼ r/, and the Euler equations can be written as
Fig. 1. Cylinder geometry in 3D.
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D/ ¼ 0 in XðtÞ; ð3Þ

/t þ
1
2
ðr/ � r/Þ þ p� pa

q
¼ 0 in XðtÞ: ð4Þ
Here pa denotes the atmospheric pressure.
On the free boundary, the continuity of the stress tensor between water and air leads to the balance of the surface tension

forces, p ¼ pa þ c 1
R1
þ 1

R2

� �
, where R1 and R2 are the principal radii of curvature of CtðsÞ and c is the surface tension coefficient.

Thus Eq. (4) becomes
/t þ
1
2
ðr/ � r/Þ þ c

q
1
R1
þ 1

R2

� �
¼ 0 on CtðsÞ: ð5Þ
Finally, with Rðs; tÞ ¼ ðXðs; tÞ;Yðs; tÞ; Zðs; tÞÞ the position vector of a fluid particle on the free surface, the kinematic boundary
condition states
Rtðs; tÞ ¼ uðRðs; tÞ; tÞ on CtðsÞ;
where s ¼ ðs1; s2Þ identifies the fluid particle that is at x ¼ Xðs; tÞ; y ¼ Yðs; tÞ; z ¼ Zðs; tÞ at time t. The complete model equa-
tions in 3D are therefore
u ¼ r/ in XðtÞ; ð6Þ
D/ ¼ 0 in XðtÞ; ð7Þ
Rt ¼ u on CtðsÞ; ð8Þ
D/
Dt
¼ 1

2
ðr/ � r/Þ � c

q
1
R1
þ 1

R2

� �
on CtðsÞ; ð9Þ
with the material derivative defined in the standard way
D
Dt
¼ @

@t
þ u � r:
If rotational symmetry around the z axis is now assumed, the free boundary is given by a curve in the ðr; zÞ plane, i.e., CtðsÞ
can be taken as the x > 0 section of the intersection of the three-dimensional boundary surface with the y ¼ 0 plane. The
velocity and the potential inside the fluid are denoted by uðr; z; tÞ and /ðr; z; tÞ, respectively and the two-dimensional prob-
lem can therefore be stated as
u ¼ r/ in XdðtÞ; ð10Þ
@2/
@r2 þ

@2/
@z2 þ

1
r
@/
@r
¼ 0 in XdðtÞ; ð11Þ

Rt ¼ u on CtðsÞ; ð12Þ
D/
Dt
¼ 1

2
ðr/ � r/Þ � c

q
1
R1
þ 1

R2

� �
on CtðsÞ: ð13Þ
Here XdðtÞ denotes the fluid domain in two dimensions, and R(s, t) = (R(s, t), Z(s, t)) is the corresponding position vector of a
fluid particle located at the free boundary, see Fig. 2.

2.1. Dimensionless formulation

For the numerical implementation, it is convenient to reformulate the above equations in dimensionless form. To this end,
the characteristic length is chosen as the cylinder radius r0. The characteristic time is taken as
t0 ¼
qr3

0

c

� �1
2

;

Fig. 2. Cylinder geometry in the r–z plane.
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which comes from setting the ratio between inertial and surface tension forces equal to one. The dimensionless variables are
then
~/ð~r;~z;~tÞ ¼ t0

r2
0

/ðr; z; tÞ; ~r ¼ r
r0
; ~z ¼ z

r0
; ~t ¼ t

t0
; ~u ¼ t0

r0
u; ð14Þ
and Eq. (13) for the free surface boundary condition becomes
D~/

D~t
¼ D~/

Dt
Dt
D~t
¼ t2

0

r2
0

D/
Dt
¼ t2

0

r2
0

1
2
ðr/ � r/Þ � c

q
1
R1
þ 1

R2

� �� �
¼ 1

2
r~/ � r~/
� �

� 1
~R1

þ 1
~R2

� �
: ð15Þ
In what follows, the tilde designating the dimensionless variables will be dropped, and the dimensionless model can then be
written as
u ¼ r/ in XdðtÞ; ð16Þ
@2/
@r2 þ

@2/
@z2 þ

1
r
@/
@r
¼ 0 in XdðtÞ; ð17Þ

Rt ¼ u on CtðsÞ; ð18Þ
D/
Dt
¼ 1

2
ðr/ � r/Þ � 1

R1
þ 1

R2

� �
on CtðsÞ: ð19Þ
To simplify notation further, Eq. (17) will be written as D/ðr; zÞ ¼ 0. Eqs. (16)–(19) are the Lagrangian–Eulerian formulation
of the fluid motion. In classical front tracking methods for this system of partial differential equations, a fixed number of fluid
particles are chosen at the initial time and the trajectories of these particles are followed as time evolves. This method suffers
difficulties when the free boundary changes topology, and thus the next section develops an approach based upon a Level Set
formulation.

3. Level Set framework

Level set [25] methods represent a propagating surface as the zero level set of a time-dependent, implicit function, and
then solve the resulting equations of motion for this function in a fixed grid Eulerian setting. They rely in part on the theory
of curve and surface evolution given in [31,32] and on the link between front propagation and hyperbolic conservation laws
discussed in [33]. Physically appropriate viscosity solutions are obtained by exploiting schemes from the numerical solution
of hyperbolic conservation laws. Level set methods are designed for problems involving topological change, curvature
dependence, geometric singularities (i.e., cusps), and complex three-dimensional problems. These methods were made effi-
cient using the Narrow Band Level Set Method strategy developed by Adalsteinsson and Sethian in [1]. For further informa-
tion, see the monograph by Sethian [35], as well as the review in [36]; applications to bubble and jets may be found in [40].

Briefly, the main idea is to embed the initial position of the front as the zero level set of the higher-dimensional function
Wðr; z; tÞ. The evolution of this function W is linked to the propagation of the actual front through a time-dependent initial
value problem. In this manner, the front at any given time is the zero level set of W. An equation of motion for W that ties the
zero level set of W to the evolving front comes from observing that the level set value of a particle on the front with path
Rðs; tÞ must always be zero:
WðRðs; tÞ; tÞ ¼ 0:
Hence by the chain rule, we have that
Wt þrWðRðs; tÞ; tÞ � u ¼ 0: ð20Þ
For the Rayleigh–Taylor problem, let XD be a fictitious fixed rectangular domain that contains the free boundary at any time
t. Eq. (18), which states that the front moves with velocity u, can be replaced by the level set equation (20) posed on XD.

To embed the free surface boundary condition given by Eq. (19) into the level set framework, the curve that represents the
initial position of the front is parametrized by its arclength: s! C0ðsÞ. For the velocity field uðr; z; tÞ, the trajectory of a fluid
particle at initial position s is given by the solution of
Rtðs; tÞ ¼ uðRðs; tÞ; tÞ;
Rðs;0Þ ¼ ðrðs;0Þ; zðs;0ÞÞ: ð21Þ
For t > 0 the free boundary curves are parametrized with the same parameter s; s! CtðsÞ, in order to have the identity
CtðsÞ :¼ Rðs; tÞ:

On the free boundary CtðsÞ define
Uðs; tÞ ¼ /ðr; z; tÞjCtðsÞ ¼ /ðRðs; tÞ; tÞ;



Fig. 3. Extension of the velocity potential off the front.
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so that by fixing s and moving t, we are constrained to a fluid particle. As a consequence, Utðs; tÞ is a total derivative and
hence
Ut ¼ /t þ u � r/ ¼ 1
2
ðr/ � r/Þ � 1

R1
þ 1

R2

� �
:

Next, let Gðr; z; tÞ be a function defined on XD such that on CtðsÞ
Gðrðs; tÞ; zðs; tÞ; tÞ ¼ Uðs; tÞ: ð22Þ
It is important to remark here that Gðr; z; tÞ is an auxiliary function that can be chosen arbitrarily, with the only restriction
that it is equal to /ðr; z; tÞ on CtðsÞ (see Fig. 3).

Applying the chain rule in the identity (22) we obtain
Gt þ u � rG ¼ 1
2
ðr/ � r/Þ � 1

R1
þ 1

R2

� �
; ð23Þ
which holds on CtðsÞ. Note that u and the right-hand-side of Eq. (23) are only defined on CtðsÞ, and thus, in order to solve Eq.
(23) over the domain XD, these variables must be extended off the front. That is, one must give meaning to both the velocity
and the right-hand-side at points off of the interface in order to advance the level set function as well as this extended po-
tential. This strategy will be discussed in Section 4, but for now assuming this extension, the system of equations, written in a
complete Eulerian framework, is
u ¼ r/ in XdðtÞ; ð24Þ
D/ðr; zÞ ¼ 0 in XdðtÞ; ð25Þ
Wt þ uext � rW ¼ 0 in XD; ð26Þ
Gt þ uext � rG ¼ fext in XD: ð27Þ
Here f ¼ 1
2 ðr/ � r/Þ � j;j ¼ R�1

1 þ R�2
2 and the subscript ‘‘ext” denotes the extension of f and u onto XD.

The free surface equations (18) and (19) have now been embedded into the higher dimension equations (26) and (27).
Next it will be shown that the system (24)–(27) in fact enriches the kinematics of the system, in the sense that it can incor-
porate topological changes of the free surface, and as well the evolution of the associated potential function within this
boundary.

3.1. Splitting of the fluid domain

Assume that, due to the underlying physics of the problem, the domain XdðtÞ splits into two disjoint closed subdomains at
t ¼ t0. As the air pressure pa is assumed constant, the two fluid subdomains will necessarily evolve independently for t > t0.
It is therefore possible to write the Lagrangian–Eulerian formulation for each separate fluid subdomain X1ðtÞ; X2ðtÞ with
respectively moving boundaries Ct;1ðsÞ and Ct;2ðsÞ,
u1 ¼ r/1 in X1ðtÞ; ð28Þ
D/1 ¼ 0 in X1ðtÞ; ð29Þ
ðR1Þt ¼ u1 on Ct;1ðsÞ; ð30Þ
D/1

Dt
¼ 1

2
ðr/1 � r/1Þ � j1 on Ct;1ðsÞ; ð31Þ
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and
u2 ¼ r/2 in X2ðtÞ; ð32Þ
D/2 ¼ 0 in X2ðtÞ; ð33Þ
ðR2Þt ¼ u2 on Ct;2ðsÞ; ð34Þ
D/2

Dt
¼ 1

2
ðr/2 � r/2Þ � j2 on Ct;2ðsÞ: ð35Þ
For t > t0, each of the free boundary curves are parametrized as before with the parameter s; s! Ct;1ðsÞ; s! Ct;2ðsÞ, in order
to have the identities Ct;1ðsÞ :¼ R1ðs; tÞ and Ct;2ðsÞ :¼ R2ðs; tÞ.

On each free boundary
U1ðs; tÞ ¼ /1ðr; z; tÞjCt;1ðsÞ ¼ /1ðR1ðs; tÞ; tÞ;
U2ðs; tÞ ¼ /2ðr; z; tÞjCt;2ðsÞ ¼ /2ðR2ðs; tÞ; tÞ;
and hence
ðU1Þt ¼
1
2
ðr/1 � r/1Þ � j1;

ðU2Þt ¼
1
2
ðr/2 � r/2Þ � j2:
The extension function Gðr; z; tÞ defined on XD is now constrained by the conditions
Gðr1ðs; tÞ; z1ðs; tÞ; tÞ ¼ U1ðs; tÞ on Ct;1ðsÞ
and
Gðr2ðs; tÞ; z2ðs; tÞ; tÞ ¼ U2ðs; tÞ on Ct;2ðsÞ:
Applying the chain rule, G satisfies
Gt þ u1 � rG ¼ 1
2
ðr/1 � r/1Þ � j1 on Ct;1ðsÞ; ð36Þ

Gt þ u2 � rG ¼ 1
2
ðr/2 � r/2Þ � j2 on Ct;2ðsÞ: ð37Þ
Denote the right-hand sides in the free surface boundary conditions by f1 ¼ 1
2 ðr/1 � r/1Þ � j1 and f2 ¼ 1

2 ðr/2 � r/2Þ � j2. If
the extensions uext and fext are defined in XD so that uextjCt;1ðsÞ ¼ u1;uextjCt;2ðsÞ ¼ u2; fextjCt;1ðsÞ ¼ f1 and fextjCt;2ðsÞ ¼ f2, then
Gt þ uext � rG ¼ fext in XD
will automatically yield (36) and (37).

4. Numerical approximation of the Eulerian potential flow model

In this section and the next, brief overviews of the main components of the algorithm are provided. More detailed dis-
cussions of level set methods, boundary element methods, and fast extension velocities may be found in the cited references.

The numerical approximation of the coupled system of PDEs, (24)–(27), can be described in two basic steps. First, using a
standard first order forward Euler explicit scheme to approximate time derivatives in the level set equations, the system to
be solved for each time tn and time step Dt is:
un ¼ r/n in XdðtnÞ; ð38Þ
D/nðr; zÞ ¼ 0 in XdðtnÞ; ð39Þ
Wnþ1 �Wn

Dt
¼ �un

ext � rWn in XD; ð40Þ

Gnþ1 � Gn

Dt
¼ �un

ext � rGn þ f n
ext in XD: ð41Þ
The second main task is to solve Eq. (39) for the free surface velocity, subject to the boundary condition /n ¼ Gn. This is
accomplished by solving the boundary integral equation corresponding to the Laplace equation in the axisymmetric geom-
etry depicted in Fig. 2, with the periodic boundary conditions,
/njC1
¼ /njC2

@/
@n

n����
C1

¼ �@/
@n

n����
C2

;

the details to be discussed in Section 4.3. With the computed velocity, the new position of the boundary is determined from
the level set equation (40), and the potential on Ctnþ1 ðsÞwill be obtained from Eq. (41). These procedures are described below.
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4.1. Initialization

To initialize the system (38)–(41) the initial front position C0ðsÞ and velocity potential /ðr; z;0Þ are needed. We use the
Rayleigh analytical solution given in [27]. Briefly it is obtained by considering a small perturbation � of the cylinder free
boundary and assuming that the potential function will be also small, that is:
r ¼ 1þ gðz; tÞ; g ¼ �~gðz; tÞ; /ðr; z; tÞ ¼ �~/ðr; z; tÞ: ð42Þ
Inserting (42) into the full nonlinear model, Eqs. (16)–(19), and retaining first order terms in � the linearized model obtained
is:
D~/ ¼ 0;

~gt ¼ ~/r jr¼1;

~/t ¼ ~gþ ~gzzjr¼1:
Now, looking for solutions of the form
~g ¼ AðtÞ cosðkzÞ; ~/ ¼ BðtÞf ðrÞ cosðkzÞ; Að0Þ ¼ 1; Bð0Þ ¼ 0;
the analytical solution found is:
/ðr; z; tÞ ¼ �BðtÞI0ðkrÞ cosðkzÞ;
gðz; tÞ ¼ �AðtÞ cosðkzÞ;
AðtÞ ¼ coshðxtÞ;

BðtÞ ¼ x
kI1ðkrÞ sinhðxtÞ;

x2 ¼ kI1ðkÞ
I0ðkÞ

ð1� k2Þ;
which is valid for short times. Here k ¼ 2p
L and L are the wave number and wave length of the perturbation. It is well known

that the maximum growth rate corresponds to k ¼ 0:697, see for example [10,27].

4.2. Level set numerical schemes

The fixed computational domain for Eqs. (40) and (41) is taken as XD ¼ ½0; L1� � ½0; L2�, L2 being the length of the initial
wave perturbation and L1 such that XD will contain the free boundary for all t 2 ½0; T� (see Fig. 4).

A rectangular mesh over the domain XD defines a set of points DD ¼ fðri; zjÞ : ri ¼ iDr; zj ¼ jDz; i ¼ 1;N; j ¼ 1;Mg, with N;M
the number of mesh points in the r and z directions and Dr;Dz the corresponding mesh sizes. Let n ¼ ðnr ;nzÞ be the unit nor-
mal vector to Ctn ðsÞ and u; v the radial and axial velocity components. The axisymmetric assumption implies u ¼ 0 and nr ¼ 0
at Cz. Moreover, due to the underlying physics of the problem the solution is not only periodic but also symmetric at z ¼ 0
and z ¼ L2. These facts will be used to impose boundary conditions for (40) and (41),
v ¼ 0 at z ¼ 0 and z ¼ L2;

@Wn

@r
¼ 0;

@Gn

@r
¼ 0 at Cz:
Let Gn
i;j be the numerical approximation of the fictitious velocity potential Gðri; zj; tnÞ. A first order upwind scheme approxi-

mation of Eq. (41) yields, for i ¼ 2;N � 1; j ¼ 2;M � 1,
Gnþ1
i;j ¼ Gn

i;j � Dtðmaxðun
i;j;0ÞD

�r
i;j þminðun

i;j; 0ÞD
þr
i;j þmaxðvn

i;j;0ÞD
�z
i;j þminðvn

i;j; 0ÞD
þz
i;j Þ þ Dtf n

i;j;
Fig. 4. Computational domain in the r–z plane.
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where
D�r
i;j ¼ D�r

i;j Gn
i;j

n o
¼

Gn
i;j � Gn

i�1;j

Dr
;

Dþr
i;j ¼ Dþr

i;j Gn
i;j

n o
¼

Gn
iþ1;j � Gn

i;j

Dr
are the backward and forward finite difference approximations for the derivative in the radial direction (the same expres-
sions hold for the corresponding z derivatives D�z

i;j and Dþz
i;j ). The discrete boundary conditions are:
v i;1 ¼ 0 and v i;M ¼ 0 for i ¼ 1;N;

@Gn
i;j

@r
�

4Gn
2;j � 3Gn

1;j � Gn
3;j

2Dr
for ðri; zjÞ 2 Cz;

Gn
N;j ¼ Gn

N�1;j; Gn
1;j ¼ Gn

2;j for j ¼ 1;M:
The same discrete equations, without source term, can be written for W, Eq. (40).
Note that, for simplicity, we have written u;v ; f instead of uext;vext; fext, and we describe a first order explicit scheme with

a centered source term. Initial values of G0
i;j are obtained by extending /ðr; z;0ÞjC0ðsÞ. However, at any time step n it is always

possible to perform a new extension of /nðr; z;nDtÞ and a reinitialization of the level set function. We remark here that if
reinitialization is done too often, especially using poor reinitialization techniques, spurious mass loss/gain will occur. Thus,
it is important to perform reinitialization both sparingly and accurately.

A key issue is how one obtains uext and fext on the grid points of XD. One is free to chose any extension for the velocity and
the right-hand-side, as long as they smoothly tend to the correct values on the interface, and do not induce instabilities in the
resulting flow. Given any point in the domain, a natural way to construct such an extension is to choose the value at this
point to be the same as that of the closest point on the interface: this idea was first introduced in [22], and executed by fol-
lowing the characteristics of the signed distance function corresponding to the level set function. An equivalent formulation
is to solve the equationrW � rW ¼ 0, where W is the quantity to be extended: this was discussed in detail in [2], along with
a fast Dijkstra-like method to solve this equation. In our case, we calculate f ¼ 1

2 ðr/ � r/Þ � j on free surface nodes, and use
these values together with the conditionrf � rW ¼ 0 to obtain fext. For the velocity components we follow the same strategy,
ru � rW ¼ 0;rv � rW ¼ 0. This algorithm for extending quantities defined on the front to off the front works very well for
the velocity field in the case of Eq. (26), as it maintains the signed distance function for the level sets of W.
4.3. Boundary integral equations

The details of the boundary integral solution of the axisymmetric Laplace equation have been given in [15]. However, for
completeness, this section will briefly review this algorithm, focusing on the aspects of the algorithm that are somewhat
‘nonstandard’, namely the modified Galerkin formulation and the evaluation of the surface gradient. Further details can
be found in [15].

For D/ ¼ 0, the interior and exterior boundary integral equations for the axisymmetric potential /ðr; zÞ take the form [20]
/ðr̂; ẑÞ ¼
Z

C
r
@/
@n
ðr; zÞGðr̂; ẑ; r; zÞ � /ðr; zÞ @G

@n
ðr̂; ẑ; r; zÞ

� �
dC; ð43Þ

0 ¼
Z

C
r
@/
@n
ðr; zÞGðr̂; ẑ; r; zÞ � /ðr; zÞ @G

@n
ðr̂; ẑ; r; zÞ

� �
dC;
where the Green’s function Gðr̂; ẑ; r; zÞ will be defined below. As above, the coordinates are the standard cylindrical ðr; h; zÞ,
with the h coordinate having been integrated out. In the first equation, ðr̂; ẑÞ is a point interior to the domain, in the second
ðr̂; ẑÞ lies outside, and the boundary integration is with respect to fr; zg. With an appropriate definition of the singular inte-
grals [14], the equations are valid for ðr̂; ẑÞ 2 C, and are in fact identical. We keep both forms at this point for the subsequent
discussion of the gradient.

The axisymmetric Green’s function Gðr̂; ẑ; r; zÞ and its normal derivative are given in terms of the complete elliptic inte-
grals of the first and second kind, KðmÞ and EðmÞ,
Gðr̂; ẑ; r; zÞ ¼ 1
p

1

ðaþ bÞ1=2 KðmÞ; ð44Þ

@G

@n
ðr̂; ẑ; r; zÞ ¼ 1

p
nr

2rðaþ bÞ1=2 fEðmÞ � KðmÞg � n � R

ða� bÞðaþ bÞ1=2 EðmÞ
" #

: ð45Þ
Here a ¼ r2 þ r̂2 þ Dz2; b ¼ 2rr̂; Dr ¼ r � r̂; Dz ¼ z� ẑ; R ¼ ðDr;DzÞ and n ¼ nðr; zÞ is the unit outward normal at the field
point. Adopting the notation in [23],
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KðmÞ ¼
Z p=2

0

dh

ð1�m sin2ðhÞÞ1=2 ; ð46Þ

EðmÞ ¼
Z p=2

0
ð1�m sin2ðhÞÞ1=2dh;
where the parameter m and its complementary parameter m1 ¼ 1�m are defined by
m ¼ 2b
aþ b

¼ 4rr̂

ðr þ r̂Þ2 þ Dz2
;

m1 ¼
a� b
aþ b

¼ Dr2 þ Dz2

ðr þ r̂Þ2 þ Dz2
: ð47Þ
The formula for the normal derivative of G can be derived by using the relations [39]
d
dk
eK ðkÞ ¼ eEðkÞ

kð1� k2Þ
�
eK ðkÞ

k
; ð48Þ

d
dk
eEðkÞ ¼ eEðkÞ � eK ðkÞ

k
;

where eK ðkÞ ¼ Kðk2Þ and eEðkÞ ¼ Eðk2Þ.
For computations, EðmÞ and KðmÞ are conveniently approximated by the polynomial expansions developed by Hastings

[17],
KðmÞ �
X4

m¼0

ammm
1 � logðm1Þ

X4

m¼0

bmmm
1; ð49Þ

EðmÞ � 1þ
X4

m¼1

cmmm
1 � logðm1Þ

X4

m¼1

dmmm
1;
the error in these formulas being less than 2� 10�8; the coefficients fam; bm; cm; dmg can be found in [23]. Note that G and its
normal derivative have logarithmic singularities for ðr̂; ẑÞ ! ðr; zÞðm1 ¼ 1�m ¼ 0), and consequently appropriate techniques
must be employed for handling these weak singularities [15].

It is important to note that the singular behavior of the kernel functions is different at the symmetry axis: from the inte-
gration of h;Gðr̂; ẑ; r; zÞ represents the potential due to a ring source at fr̂; ẑg, while on the axis this degenerates to a point. The
term aþ b ¼ r2 þ r̂2 þ Dz2 that appears in the denominator in Eqs. (44) and (45) is equal to 0 on the axis, r ¼ r̂ ¼ Dz ¼ 0. This
difficulty will be circumvented by employing a Galerkin approximation with the Galerkin weight functions modified to be
zero on the symmetry axis.

4.3.1. Galerkin approximation
In the following, the singular integrals will be defined as a limit to the boundary [14], and to simplify the notation, we

employ Q ¼ ðr; zÞ and P ¼ ðr̂; ẑÞ. For convenience, the exterior limit form of Eq. (43) will be employed, and can be written as
PðPÞ � lim
�!0þ

Z
C

r
@/
@n
ðQÞGðP�;QÞ � /ðQÞ @G

@n
ðP�;QÞ

� �
dCQ ¼ 0; ð50Þ
where P� ¼ ðr̂�; ẑ�Þ ¼ ðr̂; ẑÞ þ �N;N ¼ NðPÞ being the unit outward normal at P ¼ ðr̂; ẑÞ.
In Galerkin, Eq. (50) is enforced ‘on average’ by employing a second boundary integration with respect to P,
0 ¼
Z

C
ŵkðPÞPðPÞdCP : ð51Þ
The Galerkin weight function ŵkðPÞ is usually composed of all shape functions wlðPÞ that are nonzero at a particular node Pk;
in particular, this implies ŵkðPkÞ ¼ 1. In this work, a simple linear interpolation is employed to approximate the boundary
and the boundary functions, and thus the Galerkin weights are piecewise linear.

To regain the symmetry (thereby allowing a symmetric-Galerkin formulation), and to ameliorate the axis singularity, the
obvious course of action is to take the standard weight functions ŵkðPÞ and multiply by r̂. Thus, the equations to be solved
take the form
0 ¼ lim
�!0þ

Z
C

r̂ŵkðPÞ
Z

C
r
@/
@n
ðQÞGðP�;QÞ � /ðQÞ @G

@n
ðP�;QÞ

� �
dQdP: ð52Þ
4.3.2. Gradient evaluation
For the Rayleigh–Taylor problem, and moving boundary problems in general, the evaluation of the surface gradientr/ is

critical: this function is the surface velocity, and it enters into the equation for the free surface boundary condition. A wide
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variety of boundary integral methods have been developed for gradient evaluation, see [41] for an overview. The approach
employed herein [16] exploits the representation of the gradient as a boundary integral, but it will turn out that only local
integrations (as opposed to a complete boundary integral) are required.

The surface gradient equations are obtained by differentiating, with respect to r̂ and ẑ, the interior and exterior limit po-
tential equations, Eq. (43), resulting in
@

@X
/ðPÞ ¼

Z
C

r
@/
@n
ðQÞ @G

@X
ðP�;QÞ � /ðQÞ @

2G

@X@n
ðP�;QÞ

 !
dQ ; ð53Þ

0 ¼
Z

C
r
@/
@n
ðQÞ @G

@X
ðP�;QÞ � /ðQÞ @

2G

@X@n
ðP�;QÞ

 !
dQ ; ð54Þ
where X is either r̂ or ẑ and the interior �! 0� and exterior �! 0þ limits are understood. Expressions for the kernel func-
tions can be obtained by using Eq. (48), and are listed in [15].

Unlike the limit equations for surface potential, wherein the jump term in the integral of @G=@n ensures that the bound-
ary equations are identical, the two gradient boundary equations are in fact distinct. The key idea is therefore to take the
difference of Eqs. (53) and (54), as then all nonsingular integrals will immediately cancel in the limit. In Galerkin form, once
again employing the modified weight functions, this ‘limit-difference’ equation takes the form
Z

C
r̂ŵkðPÞ

@

@X
/ðPÞdC ¼ lim

�!0�
� lim
�!0þ

� �
; ð55ÞZ

C
r̂ŵk

Z
C

r
@/
@n
ðQÞ @G

@X
ðP�;QÞ � /ðQÞ @

2G

@X@n
ðP�;QÞ

 !
dQdP:
Moreover, for the axisymmetric analysis, note that the weakly singular log terms, arising from the elliptic integrals KðmÞ and
EðmÞ, do not appear in the gradient evaluation. The elliptic integrals in fact appear solely through the Eð1Þ ¼ 1 contribution,
and as a consequence, the integrations can be carried out entirely analytically. This provides an extra measure of accuracy, as
no numerical quadratures are involved. As noted above, the computational work is also drastically reduced: the double
Galerkin integration over the complete boundary is replaced by just the singular integrations.

For the numerical implementation of both the potential, Eq. (43), and gradient equations, Eq. (55), the main task is the
evaluation of singular integrals. The discussion of the singular integration algorithms can be found in [15].

4.4. Regridding of the free surface

In a level set formulation the position of the front is only known implicitly through the nodal values of the level set func-
tion W. In order to extract the front, an interpolation (e.g. first or second order) of the W data on the grid points can be con-
structed (for example, see [7] as well as [34] for information about reinitialization strategies). Here we use a first order linear
approximation of the free surface, yielding a polygonal interface formed by unevenly distributed nodes, termed LS nodes. As
a result of this extraction technique, two LS nodes can lie very close together, and this can cause difficulties and instabilities
for the boundary element calculation. To overcome this problem, and also to achieve more front resolution when needed, a
front node regridding technique has been employed.

In this scheme, an initialization point on the front is selected according to a particular criterion, such as minimum neck
radius, velocity modulus, or front curvature. This point divides pieces of the front in two halves and new nodes are chosen so
that, lying in the same polygon, they are redistributed by arclength according to the formula:
siþ1 � si ¼ d0ð1þ siðf0 � 1ÞÞ;
where si denotes the arclength distance from node i to the initialization point ði ¼ 0Þ and d0; f0 are user selected parameters.
These regridded nodes on the front are used to create the input file for the BEM calculations and are termed BEM nodes.

4.5. The algorithm

To initialize the front position and the front velocity potential we use the Rayleigh–Taylor analytical solution for the li-
quid column. If the initial configuration is a closed drop, the initial potential and velocity will be set to zero and motion is
started by the initial front curvature.

The basic algorithm can be summarized as follows:

1. Initialize C0ðsÞ;Uðs;0Þ;u; f .
2. Initialize the level set function W on XD.
3. Initialize G by extending Uðs;0Þ onto grid points of XD.
4. Extend u and f off the front onto XD.
5. Update G using (27) in XD.
6. Move the front with velocity u using (26) in XD.
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7. Bicubic interpolate G from grid points of XD to the front nodes to obtain new boundary conditions for (25).
8. Generate XðtÞ and solve (25), using the Boundary Element Method, to obtain the velocity u on the front nodes.
9. Calculate curvature j and the source term f on the front nodes. Go back to step 4 and repeat forward in time.

A more detailed algorithm including regridding is:

Initialization of C0ðsÞ;U0;G0;W0 and f 0.
do k=1, max_time_steps
� Extend u;v; f from initial LS front nodes (and reinitialize W and G if needed).
� Evolve the front updating W and the potential updating G.
� Find number of fronts and LS nodes on each front.
Table 1
Discrete

Case

(a)
(b)

Table 2
Discrete

Case

(c)
(d)
(e)

Table 3
Pinchin

Case

(a)
(b)
(c)
do i=1, number_of_fronts

� Redistribute LS nodes to find BEM nodes for the ith front.
� Compute curvature j on BEM nodes for the ith front.
� Bicubic-interpolate G on BEM nodes to find the potential for the ith front.
� Generate @XiðtnÞ for the ith front.
� Calculate u;v on BEM nodes for the ith front solving (25).
� Find f on BEM nodes for the ith front.
� Store u;v ; f of the ith front in a packed array.
� Rename BEM nodes as LS nodes for the next extension.
end do

end do
5. Numerical results

To study the convergence properties of this method and its ability to simulate the Rayleigh–Taylor (R–T) instability and
subsequent drop formation, we first present numerical results corresponding to the linearized model; this allows a compar-
ison of the computed and analytical solutions for short times. Next, we show the numerical experiments performed for the
fully nonlinear model before and after pinch-off time. Finally, we study the self-similar (scaling) behavior of the minimum
neck radius, the corresponding axial coordinate, and the velocity near pinch-off.

5.1. The linearized model

To compare computed results with the R–T analytical solution we perturb the front with a cosine wave of amplitude
� ¼ 0:001 and wave number k ¼ 0:697, which corresponds to the maximum growth rate. We simulate one wave period, thus
L2 norms of the listed variables for Dr ¼ 0:01.

Dt rf / u v �r

0.01 4.92e�07 1.65e�06 2.08e�05 4.19e�05 3.3e�03
0.001 2.36e�07 6.99e�07 9.49e�06 1.59e�05 1.6e�03

L2 norms of the listed variables for Dt ¼ 0:01.

Dr rf / u v �r

0.5 4.90e�05 7.39e�04 5.10e�04 1.70e�04 6.2e�02
0.05 5.82e�07 2.32e�06 2.76e�05 6.11e�05 2.1e�03
0.005 4.92e�07 1.65e�06 2.08e�05 6.19e�05 1.9e�03

g characteristics.

tp zp

22.2753 1.33
22.2843 1.29
22.2704 1.33
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the length of the cylinder is L2 ¼ 9 and the initial radius is r0 ¼ 1. Let XD ¼ ½�3;3� � ½0;9� be the fixed domain that contains
the free boundary for all t 2 ½1;1:5�;Dr ¼ Dz the grid size and Dt the time step. We denote by Ds the arclength spacing be-
tween BEM nodes. We have run a series of numerical tests to study the convergence properties of the computed solution
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with respect the analytical solution. The discrete L2 norm (at BEM nodes) of the difference has been calculated at each time
step for each of the variables, namely the front position, rf , the velocity potential, /, the axial velocity, u, and the radial veloc-
ity, v. In Table 1 we show the discrete norms at t ¼ 1:5 for the listed variables, with fixed Dr ¼ 0:01 and various Dt. We note
here that for Dt ¼ 0:1 instabilities grow and the solution blows up before t ¼ 1:5. In Table 2 we show same discrete norms,
this time with Dt ¼ 0:01 and varying Dr. The discrete L2 norm of the relative error in the front position is almost equal to the
absolute error norm, due to rf � 1. Nevertheless, as the wave amplitude is very small it is valuable to check how the L2 dis-
crete norm of the relative error in the wave amplitude, �r , changes with respect the discretization parameters. This is shown
in the last column of Tables 1 and 2.

From these results it can be seen that we achieve a convergence rate with time that is roughly first order: some of the
variations may have to do with the interpolations and regridding involved. With respect to the grid spacing, Dr, the discrete
norms also decrease, but it is not so obvious that we achieve first order convergence looking at cases (d) and (e). This can be
due to the fact that the front profile is almost flat and more space resolution does not increase accuracy. Conservation of
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